
Private IP addresses and NAT

Networking with jails

November 26, 2019

The easiest way to provide jails with a network address is to use the
parameter ip4.addr.

jail01 {
ip4.addr = "em0|10.0.2.80";

}

This downside of this method is that it requires �xed IP addresses on
your network segment. In an enterprise this requires communication
with the networking team, in the cloud this means paying money for
additional public IP addresses. This article helps you save money as
well as helping you avoid interacting with the dreaded folks of the
networking team.

The following steps are required to get this setup working:

1. Allocate a range of private IP addresses to your jails. In the case
of a cloud server you can choose any RFC 1918 address range as
your routable IP address is a public IP address. Should you want
to use this method on a server within your enterprise—which
uses RFC 1918 addresses—you must pick a unique range to avoid
overlapping IP addresses. Either align with your networking
team so they can reserve a block of IP addresses for your jails,
or pick a range that should not be used anywhere else, e.g. the
test-net addresses from RFC 5735.

2. Create a new loopback interface on the host and assign it an IP
address from this range. It will act as the default gateway for
your jails and perform network address translation (NAT) on
behalf of the jails.

1

2

3. Create the necessary �rewall rules for network address transla-
tion on the host.

4. Create your jails.

Let’s revisit these actions in more detail and add some code.

IP address space
In this article I will use one of the test-net ranges (203.0.113.0/24) from
RFC 5735 as these addresses won’t con�ict with neither the public
IP space on the Internet nor with the routable IP addresses of the
enterprise.

If you ask the company’s networking team for a unique range of IP
addresses, you can also opt for not using network address translation.
However, this requires the networking team to route tra�c for the
given IP range to your FreeBSD host, something they might not want
to do.

Loopback interface
Edit /etc/rc.conf and add the following lines, creating a new loopback
interface.

cloned_interfaces="lo100"
ifconfig_lo100="203.0.113.1/24"

Next create the interface; this step will be done automatically at startup
the next time you reboot the server.

ifconfig lo100 create

Firewall rules
In this article I will use PF �rewall rules. The con�guration for the
IPFW and IPF �rewalls will be similar.

We will start with allowing outbound access for all the jails. First
create two macros to make the con�guration more readable.

INTF_PUB="em0"
NET_JAILS="203.0.113.0/24"
INTF_JAILS="lo100"

3

Next exclude inter-jail communication. It might not be a good idea
to do this, but that would depend on your setup in which case you
should just create �rewall rules for each and every jail on the loopback
interface.

set skip on { lo0 $INTF_JAILS }

Finally create a NAT rule to translate outbound tra�c.

nat pass on $INTF_PUB from $NET_JAILS to any -> ($INT_PUB)

See the man page on where to put these statements and they have a
strict order.

Create jails
Now create the jail and add its con�guration to /etc/jail.conf, e.g.:

nattest {
ip4.addr="203.0.113.80";
allow.raw_sockets;

}

The second statement is for testing purposes only and should be re-
moved in production environments for added security.

If the jail requires inbound access, add the necessary rules to
/etc/pf.conf :

rdr on $INTF_PUB proto tcp \
from any to ($INTF_PUB) port 80 \
-> 203.0.113.80 port 80

