
Fiddling with FreeBSD - Netgraph Part-II

In the previous post, we explored what a netgraph is, how to
create a bridge, and connect it to an Ethernet interface. We
also looked at how to create an ng_eiface(4) and a�ach it to
link2 of bridge0. However, I feel that further explanation is
needed related to jail setup. Let's dive into that.

Jail and bhyve vm setup with Netgraph

Current Network Setup - Example

192.168.15.2-254/24

192.168.15.1/24

em0

em1

Switch

Primary interface

Secondary interface for jails and vms

Standard bridge example setup for jails and vms

Desktop

j1 j2 j3 vm1

epair0b

vm2 vm3

epair1b epair2b vtnet0 vtnet0 vtnet0

epair0a epair1a epair2a tap0 tap1 tap2

bridge0
em1

$ ifconfig
em0: ...
 inet xxx.xx.xx.x ...
 ...
em1: ...
 ...
...
bridge0: ...
 member: em1 ...
 member: epair0a ...
 member: epair1a ...
 member: epair2a ...
 member: tap0 ...
 member: tap1 ...
 member: tap2 ...
epair0a: ...
epair1a: ...
epair2a: ...
tap0 ...
tap1 ...
tap2 ...

The setup in the example above may vary depending on the
infrastructure the user has and the configuration they want to
implement. Now, for testing purposes, we will replicate the
same configuration using Netgraph to gain a deeper
understanding of it.

The first step is to load the ng_ether kernel module, which will
create nodes of the ether type for us, though no hooks will be
connected initially.

Let's Setup...

ngctl ls; kldload -nq ng_ether.ko; kldstat

After executing the last command, you should see em0 and em1 nodes of the ether type
created. However, if you check the hooks column, you will notice that no hooks are
connected.

As we know, ng_ether(4) supports three hooks: lower, upper, and orphans. The first
step is to connect em1's lower hook to the bridge's link0. However, we haven't created
the bridge yet, which is where the $ doas ngctl mkpeer command comes in. Let's
review its syntax.

$ doas ngctl mkpeer [path] <type> <hook> <peerhook>
mkpeer - Create and connect a new node to an existing node

[path] - Every netgraph node is addressable called a node address or path, addresses
are used to send control messages.

<type> - type of node we want to create and connect to, this will load it's kernel module
dynamically verify that with $ kldstat.

<hook> - hook of the node what's mentioned in the [path]

<peerhook> - hook of the node what's mentioned in the <type>

In our case it would be em1:

In our case it would be bridge

this <hook> is the hook of em1: which we want to connect is lower hook

<peerhook> is the hook of bridge in our case is link0 hook

With that we should now be able to create our bridge and connect hooks

$ for i in $(jot - 0 2)
do doas jail -c name=j$i host.hostname=j$i.home.arpa vnet
vnet.interface=ngeth$i persist
done

$ for i in $(jot - 0 2)
do doas ifconfig -j j$i ngeth$i xxx.xx.xx.x$i/xx
done

$ doas ifconfig em1 up

Let's create our jails

Assign ip address to our jails

Bring up our em1 interface

Try pinging from host, you should now have working jail setup with netgraph.

$ doas ngctl mkpeer em1: bridge lower link0

$ doas ngctl show em1:

$ doas ngctl list

connect these two hooks

Let's rename our "<unnamed>" bridge.

Assuming you have ID: 000000b of the bridge

$ doas ngctl name "[00b]:" bridge0

$ doas ngctl name em1:lower bridge0
OR

$ doas ngctl list

Now we are going to connect our ng_ether(4) upper hook to ng_bridge(4) link1, note
we are not creating anything now but connecting and syntax changes.

$ doas ngctl connect em1: bridge0: upper link1

$ doas ngctl show bridge0: OR $ doas ngctl show em1:

$ doas ngctl ls -ln

connect these two hooks

1

2

The bridge setup with em1 is complete. Now, let's create another node type called
ng_eiface(4) supports single hook called ether, which is a generic Ethernet interface,
and named as ngeth0, ngeth1, and so on.

$ doas ngctl mkpeer .: eiface ether ether

here "." OR ".:" is local node which is basically is ng_socket(4), supports hooks with
arbitrary names. you should see ngeth0 of type eiface created with ifconfig command.

This can be any name

$ doas ngctl list

let's connect our ngeth0 ether hook to bridge0 link2

$ doas ngctl connect ngeth0: bridge0: ether link2

$ doas ngctl msg em1: setpromisc 1 Read ng_ether(4) man page

$ for i in $(jot 2); do doas ngctl mkpeer eiface ether ether;done

Create rest of the interfaces for 2 jails

you should now have ngeth0, ngeth1 and ngeth2, check with ifconfig command.

$ doas ngctl connect ngeth1: bridge0: ether link3
$ doas ngctl connect ngeth2: bridge0: ether link4

3

sh /usr/share/examples/bhyve/vmrun.sh -c 1 -m 1024M \
> -t netgraph,socket=vm0,path=bridge0:,hook=vm0link,peerhook=link5 \
> -d disk0.img \
> -i -I FreeBSD-14.2-RELEASE-amd64-disc1.iso vm0

Let's Setup bhyve vm to use Netgraph, we will create 3 vms...

sh /usr/share/examples/bhyve/vmrun.sh -c 1 -m 1024M \
> -t netgraph,socket=vm1,path=bridge0:,hook=vm1link,peerhook=link6 \
> -d disk0.img \
> -i -I FreeBSD-14.2-RELEASE-amd64-disc1.iso vm1

sh /usr/share/examples/bhyve/vmrun.sh -c 1 -m 1024M \
> -t netgraph,socket=vm2,path=bridge0:,hook=vm2link,peerhook=link7 \
> -d disk0.img \
> -i -I FreeBSD-14.2-RELEASE-amd64-disc1.iso vm2

j1 j2 j3 vm1 vm2 vm3

em1

LowerUpper

HOOK

bridge0

link0link1

ng_bridge(4)

ngeth0 ngeth1 ngeth2

12

link2

link3 link4 link5 link6

link7

3 vm0:vm0link vm1:vm1link vm2:vm2link4

4

Tips and tricks to remember before you proceed...

You don't have to run these commands individually; you can
include all of them in a single startup file and execute it at
once. However, keep in mind that bhyve creates sockets for
you, so you only need ng_bridge(4). i would suggest practice
commands first then use this option.

$ doas ngctl read jail_start.do

mkpeer em1: bridge lower link0
name em1:lower bridge0
connect em1: bridge0: upper link1
mkpeer eiface ether ether
rmhook ngeth0: ether
connect ngeth0: bridge0: ether link2

Let's create file called jail_start.do and mention below
contents

The commands are executed interactively, which is why the
rmhook is necessary. When you create and connect the ether
hook to a local node (socket), it will throw a "file exists" error
without removing the existing hook first.

ngctl msg em1: setpromisc 1 is necessary for vm interface
to work. read ng_ether(4) for more details.

@padukajorat Licenced under CC BY

