

FreeBSD TLB shootdown
enhancement in Azure

- Souradeep Chakrabarti
- Wei Hu

● On June 8, 2016, a standard FreeBSD 10.3 image was published into the Azure
Marketplace. Microsoft published the image working as part of the FreeBSD community
and in collaboration with the FreeBSD Foundation.

● Over the year Microsoft has worked with FreeBSD community to enable support for
different h/w and Azure Hyper-V features in FreeBSD.

● Currently Azure supports FreeBSD in
– Gen2:

● amd64
● arm64

– Gen1:
● amd64

FreeBSD in Azure

TLB – Translation Lookaside Buffer
(x86)

● On chip address translation
cache stores recent virtual to
physical memory translations.

● Translation read from page
table and stored in TLB entries
for following hit to improvement
performance.

● Per-core cache. Every core has
its own TLB.

TLB flush and shootdown
Flush local TLB entries

● Context switch - update CR3

● Page table updates – INVLPG

● Performance impact

● TLB Shootdown – actions of one core causing the TLB to
be flushed on other cores

– Send IPIs to remote cores for TLB shootdown
requests.

– Wait till all cores complete the flushes

– More performance impact

TLB shootdown
● TLB flushing is a complex and costly operation in a large scale multiprocessor system.
● TLB flushing in a multiprocessor system uses IPIs to notify the other processors.
● On a native OS, the IPI delivery is handled completely in the CPU execution hardware.
● In virutal machine it involves multiple context switches and memory accesses, which

increase the overhead and complexity of the TLB flushing.
● For a VM, the TLB flush IPI should be emulated by the hypervisor, which alone knows

the vCPU to pCPU mapping that is needed for IPI delivery.
● TLB flush IPI also requires the IPI sender to wait until all receivers acknowledge the

flush operation. If one of the IPI receiving vCPUs is delayed in being scheduled by the
Hyper-V, the sender vCPU would have to wait longer until the TLB flush IPI is
acknowledged.

Solution Idea : Hypercall
Hypercall – Interface for communication with the
hypervisor - The hypercall interface accommodates
access to the optimizations provided by the hypervisor.
To use Hyper-V hypercalls to offload the TLB invalidation
synchronization between all target processors.
Keep the local TLB shootdown as is, and offload
the remote TLB shootdowns to Hyper-V hypercalls.

Implementation : main requirement
● Hyper-V guest enlightments
● Send requests (hypercalls) to Hyper-V, let host

flush TLB

Implementation : changes
● Refactoring existing remote TLB shootdown, which happens using

smp_targeted_tlb_shootdown().

● Introduction of Hyper-V specific function hyperv_vm_tlb_flush().

● After Hyper-V is initialized, transfer the tlb shootdown from native to hyperv_vm_tlb_flush.

● Introduction of repetative Hyper-V hypercall mechanism for processor count more than 64.

● Creating new functions and interfaces to integrate the new hypercalls:
HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE and
HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST.

● Based on different invl_op_codes, three different approach were taken for remote TLB
shootdown.

Implementation
● Mainly in two commits

● Bec000c9c1ef409989685bb03ff0532907befb4a
Refactor the existing tlb shootdown code.

● 2b887687edc25bb4553f0d8a1183f454a85d413d
Call Hyper-V tlb flush routine if guest is running on Hyper-V

● Hypercall to tlb shootdown

Result:Perf Numbers - IPI vs
Hypercall

Perf Numbers - Intel vs AMD

FreeBSD 15.0 guests (non-debug build), numbers taken from total FreeBSD kernel build with -j100 build option

Perf Numbers - 48 vs 16 vCPUs

FreeBSD 15.0 guests (non-debug build), numbers taken from total FreeBSD kernel build with -j100 build option.

Perf Numbers - Azure vs AWS

FreeBSD 15.0 guests (non-debug build), numbers taken from total FreeBSD kernel build with -j100 build option.

Challenges
● The performance are quite visibile when doing

the micro level test, but not in macro level.
● A generic para-virtualization framework, to

offload IPI’s to Hyper-V.

Ref
● https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types

● https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs

● O. Kilic, S. Doddamani, A. Bhat, H. Bagdi and K. Gopalan, "Overcoming Virtualization Overheads for Large-vCPU
Virtual Machines," 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Milwaukee, WI, USA, 2018, pp. 369-380, doi:
10.1109/MASCOTS.2018.00042. keywords: {Virtual machine monitors;Virtualization;Program
processors;Schedules;Scheduling;Emulation;Hardware;Virtualization;Virtual Machine;Virtual CPU;Scheduling},

https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

