
1 iXsystems, Inc. | Copyright 2020© | | 

FreeBSD, ZFS and iSCSI
or one year of TrueNAS development

Alexander Motin
mav@ixsystems.com



2 iXsystems, Inc. | © 2021 | 

Alexander Motin

OS/Services team leader at iXsystems

● FreeBSD src committer since 2007
<mav@FreeBSD.org>

● With iXsystems since 2009
<mav@iXsystems.com>

About myself



3 iXsystems, Inc. | © 2021 | 

Software

About TrueNAS

● 2005 Started as FreeNAS
● 2009 Taken over by iXsystems
● 2013 TrueNAS  appliance edition of FreeNAS
● 2020 FreeNAS -> TrueNAS Core (community)

TrueNAS -> TrueNAS Enterprise (appliance)
● 2021 Started TrueNAS SCALE (scale-out)

TrueNAS Core/Enterprise – FreeBSD 12.2 -> 13.1
TrueNAS SCALE  Debian 11.



4 iXsystems, Inc. | © 2021 | 

Services

About TrueNAS



5 iXsystems, Inc. | © 2021 | 

Hardware

● TrueNAS MSeries (flagship HA
● TrueNAS XSeries (cost-effective HA
● TrueNAS RSeries (non-HA
● TrueNAS Mini (SOHO
● Whatever (community) ;)

About TrueNAS



6 iXsystems, Inc. | © 2021 | 

History of ZFS in TrueNAS

● 2005 FreeNAS started with UFS
● 2010 FreeNAS switched to FreeBSD ZFS port
● 2020 TrueNAS 12 switched to OpenZFS 2.0 

re-integration of FreeBSD ZFS and ZFS-on-Linux
● 2021 Core/Enterprise/SCALE unified by OpenZFS 2.1

FreeBSD main – OpenZFS master
FreeBSD stable/13  OpenZFS 2.1

Thanks to Matt Macy, Ryan Moeller and others for
the OpenZFS re-integration!

From UFS to OpenZFS



7 iXsystems, Inc. | Copyright 2020© | | 

Enough marketing,
lets go engineering!



8 iXsystems, Inc. | © 2021 | 

Baseline performance test

● Hardware: 2x Xeon Gold 6242R, 768GB RAM, 9 NVMe SSDs, Chelsio 
T62100  100Gbps.  Initiator: Core i7, Chelsio T62100.

● Software: FreeBSD main from June 2020, native FreeBSD ZFS, CTL.
● Target configuration: striped ZFS pool of 9 NVMe SSDs, ARC limited to 

12GB, single ZVOL with 64KB block size, single iSCSI target LUN.
● Initiator configuration: Windows 10, software initiator tuned for large I/O.
● Test: CrystalDiskMark, sequential 256KB read/write over 64GB, Q32T2

ZFS-backed iSCSI target benchmarking



9 iXsystems, Inc. | © 2021 | 

Baseline CPU profile (Read)

ZFS-backed iSCSI target profiling



10 iXsystems, Inc. | © 2021 | 

Unexpected idle loop disaster

ZFS-backed iSCSI target optimization

● Specific request rate combined with 80 logical CPU cores created 8% 
overhead and lock contention in ACPI CPU idle handler.

● Caused by appeared to be unneeded hardware registers accesses.
● Fixed on March 8, 2021 with

455219675db “Change mwait_bm_avoidance use”,
075e4807df3 “Do not read timer extra time when MWAIT is used”



11 iXsystems, Inc. | © 2021 | 

Too many memory copies in ZFS

ZFS-backed iSCSI target optimization

● ZFS copied data 3 times: I/O aggregation scatter/gather, ARC -> DMU 
(may be a decompression instead), DMU -> CTL.

● Copy for I/O aggregation scatter/gather removed on July 7, 2021 with
eb5983e1b7b4 “Use unmapped I/O for scattered/gang ABD buffers”

● The trick only works for page-aligned I/O. Need proper scatter/gather in 
GEOM, CAM, drivers and
hardware for general case.

Thanks to Brian Atkinson for
platform-independent part of
gand ABD implementation.



12 iXsystems, Inc. | © 2021 | 

Memory copy in iSCSI target transmission path

ZFS-backed iSCSI target optimization

● iSCSI target copied data from CTL buffer into mbuf chain for TCP send.
● Fixed on June 8, 2020 with

9a4510ac322 “Implement zero-copy iSCSI target transmission/read.”
● Some old pre-busdma NIC drivers expect physically contiguous mbuf’s.
● Fixed data corruption by cxgb(4) driver in 9dc7c250b8.
● Few remaining broken 100Mbps NIC

drivers are irrelevant for iSCSI and
I hope they removed soon anyway.



13 iXsystems, Inc. | © 2021 | 

TCP lock contention in iSCSI target

ZFS-backed iSCSI target optimization

● iSCSI suffered from contention on TCP connection lock.
● Fixed in January-March 2021 with

b75168ed “Make software iSCSI more configurable”
6895f89fe “Coalesce socket reads in software iSCSI”
b85a67f54 “Optimize TX coalescing by

keeping pointer to last mbuf”
, plus by large mbufs of “zero-copy iSCSI target
transmission/read” change above.



14 iXsystems, Inc. | © 2021 | 

More efficient and predictable large I/O.

● ZFS defaults to 128KB blocks, but can be set up to 1MB (or more).
● ZFS aggregates consecutive I/O requests up to 1MB for HDDs.
● ZFS includes own I/O scheduler, controlling device queue depth.

● OS should not fragment I/O requests at least up to 1MB.

● Initial heavy lifting was done by Konstantin Belousov on November 28, 
2020 with cd853791040.

● Later I improved and/or fixed large I/O handling in CAM, CTL, mpt(4), 
mrsas(4), nvme(4) and pms(4).

MAXPHYS of 1MB



15 iXsystems, Inc. | © 2021 | 

The problem

● ZFS differentiates 9 types of I/O (priorities), that can be divided into 3 
groups: synchronous (TBD ASAP, asynchronous interactive (within 
seconds) and asynchronous non-interactive (within minutes).

● ZFS I/O scheduler does not know disk specifics, so it had to be 
conservative, balancing between lower performance of short queues and 
high latency or even starvation of long ones.

● Disk’s internal scheduler does not know about ZFS priorities and has to 
balance between good throughput and acceptable latency on average.

● I have found that some HDDs may delay random reads up to 4 seconds 
when they detect concurrent sequential read stream!  It is not 
acceptable for many applications.

I/O QoS



16 iXsystems, Inc. | © 2021 | 

Hardware way

Best solution would be to pass QoS information to the hardware:
● SATA priority – very simplistic, sometimes implemented, results vary.
● SCSI priority – poorly specified, not implemented except some SATL.
● NVMe priority – better specified, harder to use, less needed. ;)

I’ve really tried it on October-November 2020
8836496815 “Introduce support of SCSI Command Priority”
06c888ecb9 “Add icc (Isochronous Command Completion) ccb_ataio field.”

Unfortunately not very successfully due to limited hardware support.

Thanks to Muhammad Ahmad from Seagate.  Hope to see better hardware. ;)

I/O QoS



17 iXsystems, Inc. | © 2021 | 

Software way

● Ended up with some workarounds in kernel:
0177b8871 “Enable bioq 'car limit' added at r335066 at 128 bios”

● and in ZFS
6f5aac3ca “Reduce latency effects of non-interactive I/O”
891568c99 “Split dmu_zfetch() speculation and execution parts”
7457b024b ”Scale worker threads and taskqs with number of CPUs”
41d6eecd5 “Improve scrub maxinflight_bytes math”

● Now ZFS should be able to detect interactive workload starvation and 
throttle non-interactive one, dramatically reducing maximum latency.

I/O QoS



18 iXsystems, Inc. | © 2021 | 

Repeated performance test

● Software: FreeBSD main from September 2021, OpenZFS 2.1, CTL.

● Now bottlenecked by single CPU on Windows initiator side in most tests.

ZFS-backed iSCSI target benchmarking



19 iXsystems, Inc. | © 2021 | 

New CPU profile (Read)

ZFS-backed iSCSI target profiling

● Now only 2 data copies on read instead of 4!  Can be 1 if we disable ABD 
ARC and compression, but that means KVA mapping and fragmentation.



20 iXsystems, Inc. | © 2021 | 

Baseline CPU profile (Write)

ZFS-backed iSCSI target profiling

● Write was pretty much alike to read.



21 iXsystems, Inc. | © 2021 | 

New CPU profile (Write)

ZFS-backed iSCSI target profiling

● After all the changes iSCSI receive still copies from TCP to CTL buffer.



22 iXsystems, Inc. | © 2021 | 

New CPU profile (Offloaded write)

ZFS-backed iSCSI target profiling

● Can be fixed by Chelsio iSCSI offload (cxgbei).
● Thanks to John Baldwin, now can be only 2 (or 1 copies on write too!



23 iXsystems, Inc. | © 2021 | 

Repeated performance test

● Hardware: 2x Xeon Gold 6242R, 768GB RAM, 10 NVMe SSDs.
● Software: FreeBSD main from November 2021, OpenZFS master.
● Test: fio, sequential 1MB read/write over 12 128GB ZVOLs, Q1T12, ARC 

limited to metadata.
● Both read and write are now bottlenecked by the SSDs.

Raw ZFS throughout benchmarking



24 iXsystems, Inc. | © 2021 | 

CPU profile (Read)

Raw ZFS throughput profiling

● Reading 15GB/s with only 13% CPU usage, out of which 40% by memory 
copy and 20% by checksums.



25 iXsystems, Inc. | © 2021 | 

CPU profile (Write)

Raw ZFS throughput profiling

● Re-writing 18.5GB/s with only 35% CPU usage, out of which 30% by 
memory copy, 15% by checksums and 10% by lock contention.



26 iXsystems, Inc. | © 2021 | 

Not only throughput matters

● Aside of throughput ZFS was optimized for IOPS too:
86706441a86 Introduce write-mostly sums
c4c162c1e8f Use wmsum for arc, abd, dbuf and zfetch statistics.
f8020c93635 Make metaslab class rotor and aliquot per-allocator.
29274c9f6d7 Optimize small random numbers generation
42afb12da70 Remove refcount from spa_config_*()
97752ba22a4 Move gethrtime() calls out of vdev queue lock
f7de776da2e Fix ARC ghost states eviction accounting
c1b5869bab9 Introduce dsl_dir_diduse_transfer_space()
1b50749ce97 Optimize allocation throttling
7eebcd2be6a Avoid small buffer copying on write
7f9d9e6f39f Avoid vq_lock drop in vdev_queue_aggregate()
6b88b4b501a Remove b_pabd/b_rabd allocation from arc_hdr_alloc()

ZFS CPU/IOPS optimizations



27 iXsystems, Inc. | © 2021 | 

IOPS also depend on CPU scheduler

● ZFS uses several context switches per I/O and even per block.  So it got 
attention:

f91aa773b Add wakeup_any(), cheaper wakeup_one() for taskqueue
c9205e35 Fix/improve interrupt threads scheduling
6df35af4d Allow sleepq_signal() to drop the lock
aefe0a8c3 Refactor/optimize cpu_search_*()
2668bb2a sched_ule(4) Reduce duplicate search for load
8bb173fb5 sched_ule(4) Use trylock when stealing load
e745d729b sched_ule(4) Improve long-term load balancer
ef50d5fbc x86 Add NUMA nodes into CPU topology
…

FreeBSD CPU scheduler optimizations



28 iXsystems, Inc. | © 2021 | 

Repeated performance test

● Hardware: 2x Xeon Gold 6242R, 768GB RAM, 10 NVMe SSDs.
● Software: FreeBSD main from November 2021, OpenZFS master.
● Test: fio, sequential 4KB read/write over 12 128GB ZVOLs, Q4T12, ARC 

limited to metadata.

Raw ZFS IOPS benchmarking



29 iXsystems, Inc. | © 2021 | 

CPU profile (Read)

Raw ZFS IOPS profiling

● Reading 365K blocks/s with 35% CPU usage, out of which 12% by lock 
contention (primarily ARC eviction) and 7% by CPU scheduler.



30 iXsystems, Inc. | © 2021 | 

CPU profile (Write)

Raw ZFS IOPS profiling

● Re-writing 248K blocks/s with 30% CPU usage, out of which 43% is lock 
contention (mostly ZFS dsl_dir) and 4% bottleneck in ZFS sync thread.



31 iXsystems, Inc. | © 2021 | 

Not all work is about performance

● Need PCIe hot-plug to use NVMe in enterprise environment.
● Should not crash on PCIe error:

855e49f3b “Add initial driver for ACPI Platform Error Interfaces.”
● Should receive hot-plug events and configure devices:

4cee4598e “Add mostly dummy hw.pci.enable_aspm tunable.”
5a898b2b7 “Set PCIe device's Max_Payload_Size to match PCIe…”
15cb3b540 “pcib(4) Write window registers after resource adjust…”

● Still have big problems if BIOS-reserved resources are insufficient.  Need 
resource relocation.

● Fixed vmd(4) assumes resource reservation by BIOS
7af4475a6 “vmd(4) Major driver refactoring”

, but causes interrupt sharing and some other problems.

PCIe hot-plug



32 iXsystems, Inc. | © 2021 | 

TrueNAS communify is full of surprises

● Fixed number of issues in SAS disk detection and hot-plug:
b99419aee “mpr/mps(4) Make device mapping some more robust.”
e3c5965c2 “mpr(4) Handle mprsas_alloc_tm() errors on device re”
9781c28c6 “mpr(4) Fix unmatched devq release.”
84d5b6bd6 “cam(4) Fix quick unplug/replug for SCSI.”
02d819401 “mps/mpr(4) Move xpt_register_async() out of lock.”

● Fixed other random driver issues:
e8144a13e “ciss(4) Properly handle data underrun.”
6c2d4404 “ipmi(4) Limit maximum watchdog pre-timeout 

interval.”
8434a65c “pms(4) Do not return CAM_REQ_CMP on errors.”

● Major isp(4) driver cleanup.
… and more …

Random driver fixes



33 iXsystems, Inc. | © 2021 | | 

THANK YOU
We are hiring!

www.TrueNAS.com mav@ixsystems.comwww.iXsystems.com


