
ONTAP
Continuous Integration/Testing
How a change becomes a product

© 2019 NetApp, Inc. All rights reserved.

Phil Ezolt
Netapp MTS 6 AERO/DevOps
FreeBSD Developer Summit, 5/15/19

Agenda:

§ ONTAP Background

§ How do we keep it working?

§ Life of a Change

§ Pre-submission Workflow

§ Post-submission Workflow (tier 1)

§ Post-submission Workflow (tier 2)

§ Post-submission Workflow (coverage)

§ Does it work?

2 © 2019 NetApp, Inc. All rights reserved

ONTAP

§ What is ONTAP?
§ Data Management Software: Provides fast & reliable access to data
§ Built-in storage efficiencies: snapshots, dedup
§ Access your data: NFS/SAN/CIFS/more.
§ Manage your data: GUI or CLI or Zapi (XML) or REST
§ Protect your data: replication & encryption
§ Runs on clustered Netapp filers, in VMs, or in the cloud

§ ONTAP feature set is huge, this does a better job explaining it:
§ https://www.netapp.com/us/products/data-management-software/ontap.aspx
§ Netapp has been making ONTAP for 20+ years

3 © 2019 NetApp, Inc. All rights reserved

https://www.netapp.com/us/products/data-management-software/ontap.aspx

Why is shipping ONTAP hard?

§ Diverse codebase

§ >10 millions lines of executable code (Not counting some 3rd party code)

§ Kernel & User code running in FreeBSD

§ C/C++ for product, python/perl for test code.

§ Significant 3rd-party/opensource footprint

§ Constant change

§ 20+ year-old code base

§ >1000 developers

§ High churn -> 38k changes submitted in 2018

§ Subtle interactions -> Changes to Feature A can break Feature B.

4 © 2019 NetApp, Inc. All rights reserved.

ONTAP complexity: Many Moving Parts

5 © 2019 NetApp, Inc. All rights reserved.

FreeBSD
+ Changes

C/C++ Kmods:
Protocol/Filesystem/Data Integrity

Custom Locking/Memory

C++ Apps:
CLI/REST/Management
Large & Multi-threaded

3rd-party code

FreeBSD
+ Changes

C/C++ Kmods:
Protocol/Filesystem/Data Integrity

Custom Locking/Memory

C++ Apps:
CLI/REST/Management
Large & Multi-threaded

3rd-party code

Node 1 Node 2

How do we keep it working?

§ ONTAP uses Continuous Integration

§ All dev submits to a single perforce depot:

§ DOT:dev -> Master development branch

§ No feature branches

§ Submit risky content disabled (dark)

§ monorepo (ish)

§ Contains 3rd-party code/FreeBSD/ONTAP code/unit-tests/build-scripts/test-code/test-tools

§ Can build from scratch, but most devs use incremental builds.

§ Managed by internal build system (bedrock)… One command can build everything.

§ Fully built workspaces snapshotted and available as a flexclone (~30 secs for a full client)

§ Every file has an owner

6 © 2019 NetApp, Inc. All rights reserved.

DOT:dev

How do we keep it working?

§ ONTAP uses Continuous Integration
§ Philosophy: All regressions are reverted

§ Tests MUST always pass… Check-in test change with code change.
§ Code aggressively checked in, but aggressively reverted out.

§ ~2% of all changes are reverted
§ Lock-line if stability not achieved after 24 hours

§ Philosophy: Put the eggs in one basket
§ Focus testing in one branch
§ Focus triage in one branch
§ Focus resource use on one branch
§ Unify test environment and reporting
§ Do it one way… but do it well.

7 © 2019 NetApp, Inc. All rights reserved.

How do we keep it working?

§ Known good points:
§ build-ok -> Change successfully builds most variants and passes in-build unit-tests

§ In-build unit-tests -> 28k CxxTest based ONTAP test-cases

§ cit-ok -> Change successfully passes all ~120 Continuous Integration Tests (CITs)
§ CITs -> Run for 2-hours, typically end-to-end ONTAP testing on VMs (vsims)

§ Workspace (Client) pre-submission requirements
§ ‘br make presubmit’ -> build most variants, run all unit-tests
§ Source-2-test (S2T) -> run 6 CITs based on pending changes

§ Reviewboard

8 © 2019 NetApp, Inc. All rights reserved.

DOT:dev - Life of a Change

9 © 2019 NetApp, Inc. All rights reserved.

DOT:dev

wsget

build-ok

p4 submit
cit-ok

build-ok

build
farm

S2T br make presubmitbr make run_utest@ontap.linux64

wsmerge

smoke
bubble

build
farm

reviewboard

How do we keep it working?

§ Release branches hang off of DOT:dev
§ Release testing: focus on DOT:dev as long as possible

§ Release fixes submitted to DOT:dev first
§ We can tolerate more risk in the development branch.

§ DOT:dev is often more strict (because quality gates show up there first.)

§ Changes that pass everything in DOT:dev can be pulled back.

§ Every change: May request propagation to release branches.
§ Hit cit-ok -> individual changes are automatically propagated back (auto-prop)

§ Any future reverts of those changes are ALSO auto-proped back.

§ Release branches run CITs as well, but at a reduced cadence.

10 © 2019 NetApp, Inc. All rights reserved.

DOT:dev - Life of a Change (Release)

11 © 2019 NetApp, Inc. All rights reserved.

DOT:dev

R9.7x

AutoProp

wsget

build-ok

p4 submit
cit-ok

build-ok

wsmerge

cit-ok cit-ok

Bisect & Autoheal

§ How do we keep it working?
§ Give developers known good workspaces. (build-ok, cit-ok)

§ Run builds (20m) and CITs (3 hour) on cadence.

§ Automatically find bad changes, and revert them from the line.
§ Bisect -> Find first change that broke it

§ Autoheal -> Apply ‘p4 undo’ to bad change, validate, submit

§ Autoheal fundamental to maintaining + improving quality
§ Protected areas called ‘autoheal-layer’

§ Autoheal-layer enables quality ratcheting
§ Add tool/test/sanitizer to autoheal layer, autoheal keeps it clean

12 © 2019 NetApp, Inc. All rights reserved.

Bisect (details)

§ Bisect:
1. Run specific build/test on cadence.
2. When cadence fails, record the last known good change & first failure change
3. Pick a change in-between… see if it passes.
4. Update last-good/first-bad. Go to 3 until we’ve identified the SUSPECT change that causes a failure.

§ Keys to success:
§ Minimize external dependencies… Or version them by a p4 change.

§ The same change should fail today and next week

§ Run multiple tests in parallel.
§ Premake clients at important changes. (before bisect needs them)

13 © 2019 NetApp, Inc. All rights reserved.

100 -> GOOD

200 -> BAD

100 -> GOOD

150 -> BAD

Test 150 ->

100 -> GOOD

125 -> BAD

Test 125 -> …..

109 -> GOOD

110 -> BAD

SUSPECT: 110

Autoheal (details)

§ Autoheal
§ Validation:

§ Re-run at the first failed change, make sure it fails.
§ Re-run at head-of-line with SUSPECT change reverted, make sure it passes.
§ Validate: All changes before suspect change MUST pass, and all runs after suspect MUST fail.

§ If yes… Submit the revert, and email the user & manager:
§ Change that was reverted and test that failed
§ Instructions to recreate the client, how to run the test.

§ If no… Send message to Build/CIT team warning of intermittent error

14 © 2019 NetApp, Inc. All rights reserved.

Regression Protection layers

15 © 2019 NetApp, Inc. All rights reserved.

br make presubmit Tier-1 CITs Tier-2 CITsbr make presubmit
S2T (CIT)

Autoheal

cit-okbuild-okp4 submit

User initiated Build Daemon CIT Cron/
Jenkins

CIT Cron/
Jenkins

Regression Protection layers

16 © 2019 NetApp, Inc. All rights reserved.

br make presubmit Tier-1 CITs Tier-2 CITsbr make presubmit
S2T (CIT)

Autoheal

cit-okbuild-okp4 submit

User initiated Build Daemon CIT Cron/
Jenkins

CIT Cron/
Jenkins

‘br make presubmit’ -> Build and much more

§ wsget -> get a flex-cloned client <1 minute

§ br make presubmit (~10 minutes)
§ Enforce coding standard/static analysis: (fail if violated)

§ clang-format: require code in Netapp coding standard
§ include-what-you-use: remove unneeded includes
§ clang-tidy: validate C/C++ code
§ Python (pep8): passes clean
§ Man pages: missing commands?
§ Gdb macros: still work?

…

§ Compilation: (fail on warning)
§ Compile w/ aggressive Clang warnings

17 © 2019 NetApp, Inc. All rights reserved.

‘br make presubmit’ -> Build and much more

§ br make presubmit (~10 minutes)
§ Unit-test execution:

§ Run ~28k CxxTest-based linux unit-tests (<5 minute execution)

§ Address sanitizer/Undefined sanitizer for all unit-tests

§ Valgrind for a subset of unit-tests

§ Thread sanitizer for a subset of unit-tests

§ Linux-based simulator testing (<5 min)
§ Execute workflow tests on a pared-down version of ONTAP

§ Libfuzzer corpus execution (<5 min)
§ Run checked-in corpus w/address sanitizer.

§ Code coverage (<5 min)
§ Generate UT code coverage information (including coverage of pending change)

18 © 2019 NetApp, Inc. All rights reserved.

Get Ready for Submission

§ source-2-test (S2T)
§ Combines client diff + CIT coverage data -> pick 6 CITs to run before submissions… Runs them.
§ Coverage analysis algorithm augmented with machine-learning results.

§ Submit review to reviewboard

§ p4 submit (w/Netapp additions)
§ Validates you’ve built the pending changes

§ Validates that S2T has passed

§ Checks for pending conflicting changes

19 © 2019 NetApp, Inc. All rights reserved.

Regression Protection layers

20 © 2019 NetApp, Inc. All rights reserved.

br make presubmit Tier-1 CITs Tier-2 CITsbr make presubmit
S2T (CIT)

Autoheal

cit-okbuild-okp4 submit

User initiated Build Daemon CIT Cron/
Jenkins

CIT Cron/
Jenkins

Post-submission: build-ok

§ Bammbamm daemons wake up and build change. (every 20 min)
§ If it passes ‘br make presubmit’, new ws* snapshots are created, and the change is stamped ‘build-ok’
§ If it fails, bisect is started.

§ Autoheal:
§ Use automation+bisect to detect which change broke the build.
§ Once verified, automatically revert change from the line. (ie. Submit an inverse of the bad change)
§ User gets email about revert and how to reapply.

§ Bammbamm daemon will sync forward try again
§ If build passes @change passes, stamp change as ‘build-ok’
§ Implications: wsget clients (which use build-ok) will always build AND in-build unit-tests will always pass.

21 © 2019 NetApp, Inc. All rights reserved.

Regression Protection layers

22 © 2019 NetApp, Inc. All rights reserved.

br make presubmit Tier-1 CITs Tier-2 CITsbr make presubmit
S2T (CIT)

Autoheal

cit-okbuild-okp4 submit

User initiated Build Daemon CIT Cron/
Jenkins

CIT Cron/
Jenkins

Post-submission: CITs (tier-1)

§ Continuous integration tests (CITs)
§ ~120 2-hour tests running testing ONTAP and OFFTAP in the smoke bubbles.

§ Primarily run on VSIM, with some HW.

§ Run every 3-hours on the latest build-ok.

§ If all tier-1 CITs pass on a given change, the change is stamped ‘cit-ok’

§ Autoheal for CITs
§ If any CITs fail, the offending change is bisected, and autohealed out of the line.

§ CITs
§ Have strict requirements on intermittent failure rates. (<5%)

§ Require a dedicated sheriff, who must triage all failures. (+ mailing list named after cit)

§ 24-hour operational support across multiple Netapp sites.

§ If cit-ok isn’t stamped within 24-hours, line is locked and fixed.

23 © 2019 NetApp, Inc. All rights reserved.

CIT: Week at a glance (WAAG)

24 © 2019 NetApp, Inc. All rights reserved.

CIT: Triage/Operation -> Jenkins

§ Jenkins (stuck in the middle)
§ Clearing-house for CIT results.

§ Blends into preexisting infrastructure
§ Preexisting processes -> trigger Jenkins jobs -> trigger other Preexisting processes.
§ Can spin up Jenkins instances/slaves in different test/compute environments.

§ Jenkins gathers results, and allows for triage of each failure
§ Homegrown tools wrapped around Jenkins to make common triage easier.
§ Tooling created to automatically add new CITs

25 © 2019 NetApp, Inc. All rights reserved.

Your change hit cit-ok (email)

26 © 2019 NetApp, Inc. All rights reserved.

Hello user,

The CIT-OK marker on DOT:dev has moved from 4954128 to 4954794, and these recent change(s) of yours are now CIT-OK:

This is not an absolute guarantee that your change(s) will not be reverted, but it is a good indication that it has not caused any serious issues.

Please consider using wstakechange for propagating your changes to other codelines.

E.g. To propagate change #11111 to DOT:Rfullsteam and run build/smoke tests for verification:
wstakechange -c 11111 -d DOT:Rfullsteam -t build,smoke

Alternatively, you can use "p4 take_change -state auto -c new changenum" to bring these changes into applicable prior releases.

Regards,

Build Team

Change Number Change Description Burt Associated

4954359
1) Create a kernel version of ems_helpers. (Since almost all of the code is the same, I just
recompile the same...

1172664

http://brewery.netapp.com/Brewery/Dev/ProcessWorkflows/ContinuousIntegration/HowCITsWork/index.html
http://spudspin-prd.eng.netapp.com/cgi-bin/perforce?Submit=describe&changenum=4954128
http://spudspin-prd.eng.netapp.com/cgi-bin/perforce?Submit=describe&changenum=4954794
http://brewery.netapp.com/Brewery/Dev/Standards/Propagations/index.html
http://spudspin-prd.eng.netapp.com/cgi-bin/perforce?Submit=describe&changenum=4954359
http://burtweb-prd.eng.netapp.com/burt/burt-bin/start?burt-id=1172664

Your change hit cit-ok

§ Autoprop starts
§ Requested changes are applied to release branch client.

§ If it can be applied and builds, it is submitted.

§ If not, user-gets an email with details and manual instructions about how to take it.

27 © 2018 NetApp, Inc. All rights reserved. — NETAPP CONFIDENTIAL —

Regression Protection layers

28 © 2019 NetApp, Inc. All rights reserved.

br make presubmit Tier-1 CITs Tier-2 CITsbr make presubmit
S2T (CIT)

Autoheal

cit-okbuild-okp4 submit

User initiated Build Daemon CIT Cron/
Jenkins

CIT Cron/
Jenkins

Post-submission: CITs (tier-2)

§ Tier-2 CITs run at lower cadence

§ ~525 tier-2 CITs

§ Follows all the requirements of CITs

§ Typically ‘lower-risk’ CITs. (higher-coverage tests are pushed to tier-1)

§ Runs daily on a cit-ok build.

§ Failures are autohealed out of the line.

§ Bigger change range to bisect over, but will eventually be reverted. (a few days rather than hours)

§ Does NOT block cit-ok… so errors may linger longer and can be present in a cit-ok build.

29 © 2019 NetApp, Inc. All rights reserved.

DOT:dev – Beyond cit-ok

30 © 2019 NetApp, Inc. All rights reserved.

DOT:dev

cit-ok

Build a Nightly

cit-ok cit-ok

Tier-2 CITs Coverage runs on ALL CITsIntermittent
Finder
Runs

Per-Change
Coverage
Report

Per-Project
Coverage
Report

S2T
Coverage
Data

Create a nightly

§ Once a day: the latest cit-ok is built from-scratch

§ Create a long-term build (typically used by QA for deeper testing)

§ Targets beyond ‘br make presubmit’ are built. Feed-back based optimizations are performed.

§ In release branches, these are the basis for bits shipped to customers.

31 © 2019 NetApp, Inc. All rights reserved.

DOT:dev – Beyond cit-ok

32 © 2019 NetApp, Inc. All rights reserved.

DOT:dev

cit-ok

Build a Nightly

cit-ok cit-ok

Tier-2 CITs Coverage runs on ALL CITsIntermittent
Finder
Runs

Per-Change
Coverage
Report

Per-Project
Coverage
Report

S2T
Coverage
Data

Driving out intermittent errors

§ Weekly: All tier-1 CITs are run 50 times on a cit-ok change.
§ This CIT must have passed at that change to be stamped cit-ok, so….
§ Any failure are due to intermittent issues in infra, product or test code.
§ Regular runs help identify WHEN issues started to occur.

§ Status tracked in summary page:
§ All failures must be triaged and driven out.

§ Intermittent bisect:
§ Given a failure rate, a good & bad change, a CIT + test case,
§ We can track down which change introduced an intermittent error (within a given confidence level)

33 © 2019 NetApp, Inc. All rights reserved.

DOT:dev – Beyond cit-ok

34 © 2019 NetApp, Inc. All rights reserved.

DOT:dev

cit-ok

Build a Nightly

cit-ok cit-ok

Tier-2 CITs Coverage runs on ALL CITsIntermittent
Finder
Runs

Per-Change
Coverage
Report

Per-Project
Coverage
Report

S2T
Coverage
Data

Generate coverage data

§ Coverage variants of every (650+) CIT are run on the latest nightly.

§ Data is gathered from the filer, combined with the in-build unit-test coverage data
§ Post processed to be human readable. (~18+ hour process)
§ Post-processed to be machine readable for quick source-to-test (S2T) analysis.

§ ”Coverage in the autoheal layer” -> In-build UT + CIT tier-1 + CIT tier-2
§ Used for project release criteria

35 © 2019 NetApp, Inc. All rights reserved.

Per-Change/Per-Project Coverage Report

§ Per-Change: Send developers reports on autoheal coverage of every submitted change.

§ Per-Project: Aggregate coverage of all change for an ONTAP project into one report.
§ Each project has UT and Autoheal coverage goals.. Don’t ship until hit.
§ Project reports are recalculated nightly with fresh code-coverage data:

36 © 2019 NetApp, Inc. All rights reserved.

Does it work?

§ Yes!
§ Autoheal layer has grown 20 CITs to 650+ CITs.

§ In-build UT has grown similarly

§ Since we started CI + autoheal:
§ Each subsequent ONTAP release becomes the highest quality ONTAP release

§ Disruption/Node
§ CI + Autoheal is part of a large shift in uniformity of project reporting and expectations

§ ONTAP shifted from a multi-year release to 6-month release

§ ONTAP’s backend release (from branch to ship) has shrunk (and continues to by months at a time..)

§ Other Netapp software is adopting this strategy

37 © 2019 NetApp, Inc. All rights reserved.

Summary:

§ Continuous Integration + Autoheal has given ONTAP:

§ Faster cadence

§ Higher quality

§ Efficient path for new quality bars

§ Success with CI requires change:

§ New processes to require it

§ New tooling to track it

§ New dev workflow (no branches)

§ Product mindset change

§ No regressions tolerated

§ Revert is a blessing.. not a curse.

38 © 2019 NetApp, Inc. All rights reserved.

39

Thank You

© 2019 NetApp, Inc. All rights reserved.

