Porting compression services to Capsicum

Daniel Peyrolon
dpl@FreeBSD.org
Mentor: Brooks Davis
brooks@FreeBSD.org

[
d freeBSD

FreeBSD Developer Summit
Hilton Conference Centre
St. Julian’s, Malta
September 26 — 28, 2013

dpl@FreeBSD.org
brooks@FreeBSD.org

The GSoC proposal

Porting the following software to Capsicum:
» bzip2(1)
» xz(1)
» zlib(3)
> libavcodec

Y <72
d FreeBSD

Porting applications

The way | used Capsicum.
> Used the fork() style.
> | didn't use Casper.
» Child is in capability mode.
» Changed all the functions using paths to fds. (stat - fstat)
> | wanted to keep the portability of the application.

§ FreeBSD

Porting bzip2(1)

It was not that hard, but | had this issues:
» Lack of experience.
» Tried to send fds to the child through UNIX sockets.
» That proved to be a bad choice.

Porting bzip2(1)

This was how | did it.
» Put the file descriptors bzip2 was working with on global
scope.

> | needed a fd of the directory where the current file was
located (unlink).

> Just a matter of writing the code to limit all the fds, and
enter capability mode.

» The parent just waits until the sandboxed child finishes.

[=,
d FreeBSD

Porting bzip2(1)

How | kept portability:

ifdef __FreeBSD__
include <osreldate.h>
if __FreeBSD_version >= 900041
define CAPSICUM
include <libgen.h>
include <sys/capability.h>
include <sys/wait.h>
include <sys/un.h>
endif /* __FreeBSD_version >= 900041 */
endif /* __FreeBSD__ */

H OH H H HHHFEHHEH

¥ FreeBSD

Porting bzip2(1)
Typical fork() usage:

#if defined(CAPSICUM)
if ((forkpid = fork()) == -1){
error();
} else if (forkpid != 0) {
/* Let the children compress */
wait (NULL);
} else if (forkpid == 0){
capsicum_enter();
#endif /* CAPSICUM */
stuff();
#if defined(CAPSICUM)
exit (0);
}
#endif /* CAPSICUM */

¥ FreeBSD

Porting xz(1)

Well, that was harder...
» The fds are stored in a struct file_pair.
» The function where the work is done uses the path of the files.

» Opens the files, and works on them.

Porting xz(1)

File handling code:

void (*run) (const char *filename) = opt_mode == MODE_LIST
? &list_file : &coder_run;

for (size_t i = 0; i < args.arg_count && !user_abort; ++i) {
if (strcmp("-", args.arg_names[i]) == 0)

//Processing from stdin to stdout.

run(args.arg_names[i]);

Porting xz(1)

New way of opening the files:
» | kept an array of malloc’ed file_pair *.
> All the files are opened before doing the actual work.

» run() uses now file_pair * instead of paths.

Y g
) FreeBSD

A Frame with Table

Benchmarking results for bzip2 and xz.

Filesize | bzip2 cbzip2 XZ cxz
1kb 0.01 0.01 0.11 0.11
10kb 0.01 0.01 0.11 0.11

100kb | 0.03001 0.03002 | 0.13672 0.13071
Imb | 0.27016 0.27029 | 0.41307 0.41234
1kb 0 0 0.01 0.01
10kb 0 0 0.01 0.01

100kb 0.01 0.01 0.01 0.01
Imb | 0.10051 0.10213 | 0.01033 0.0104

» 1000 tests.

» We couldn't quantify the overhead on my machine.

[=,
d FreeBSD

Porting a library

Everything changes.
» You can't wait to a child process (that's what we thought).
» Use pdfork(2).

» This child process will have to get the data from somewhere.
(unless you're inheriting everything).

zcaplib

v

v

v

v

v

v

It can be linked instead of zlib.

zcaplib is just a giant wrapper trying to work.

Uses libnv.

It executes zlibworker. Which is listening for commands.
At most I'm sending and receiving 5kb of data.

| stored the sandboxes on a SLIST (queue(3)).

¥ FreeBSD

zcaplib’s design

Application

e
H
.

zlibworker

I

-

Y g
) FreeBSD

zcaplib

Typical function in zcaplib.

extern const char * zcapcmd_gzerror();
const char * ZEXPORT gzerror(file, errnum)
gzFile file;
int *errnum;

return zcapcmd_gzerror(file, errnum);

¥ FreeBSD

zcaplib
Typical nvlist usage in zlibworker.

initNv1l();

nvlist_add_number (nvl,"command" ,ZCAPCMD_GZERROR;
nvlist_add_binary(args,"file",file,gzsize);
nvlist_add_nvlist(nvl,"args",args);

result=sendCommand (nvl,file);

ptr=nvlist_get_string(result,"result");
xerrnum=nvlist_get_number (result,"zerrno");

zcaplib’s design

command

arg #1

arg #2

arg #3

g
d FreeBSD

Using one or many sandboxes

» One sandbox - We do care about sending the structs from
application to sandbox.

» Many sandboxes - We only send it once, and the application
should forget about it.

Conclusions

v

Porting an application to Capsicum is easy.

v

Porting a library to Capsicum is hard.

v

It's possible to write a tool that automates most of the work.

v

Overload Casper with features?

Thank you all for your attention!
Questions?

Y g
) FreeBSD

