
UT Austin CRASH Project

X86 Binary Code Analysis

Shilpi Goel, Marijn Heule, Warren A. Hunt, Jr.,
Matt Kaufmann, J Strother Moore, Nathan Wetzler

August, 2013

Computer Science Department
1 University Way, M/S C0500

University of Texas
Austin, TX 78712-0233

{shigoel, marijn, hunt, kaufmann
moore, nwetzler}@cs.utexas.edu

TEL: +1 512 471 9748
FAX: +1 512 471 8885

Page 1 (University of Texas at Austin) X86 Binary Analysis August, 2013 1 / 15

Outline

1 Ecosystem

2 ACL2 Timeline

3 Evolving X86 ISA Model

4 X86 Top-Level Model

5 X86 One-Byte OPCODE Map

6 Verifying X86 Programs

7 Popcount C-code

8 Popcount X86 Binary Code

9 Not a Theorem

10 Is a Theorem

11 Future Work

12 Conclusion

Page 2 (University of Texas at Austin) X86 Binary Analysis August, 2013 2 / 15

Introduction

To enable the modeling and analysis of industrial-sized systems:

We are developing ISA models suitable for code analysis.

We are extending our ACL2-based analysis toolsuite.

We are vetting our tools on commercial-sized problems.

Our ACL2-based modeling and analysis toolsuite is in use by AMD,
Centaur, IBM, Raytheon, Rockwell-Collins, and others.

Today, we present our analysis approach for modeling the X86 ISA and
analyzing X86 binary-level programs.

These slides were previously presented at a DARPA CRASH PI Meeting in
November, 2012. Some slides were elided to keep this presentation brief.

Page 3 (University of Texas at Austin) X86 Binary Analysis August, 2013 3 / 15

Ecosystem

Ecosystem

We have significant collaboration with the industry.

Boeing

Centaur Galois

JHU

JPL

Microsoft

NI

NSA RCI

AMD

Freescale IBM

Intel

Customers

Our Program

Raytheon

Application−oriented

Research

ACL2 Project

Technology, e.g. SAT

Extend our Core

Our own research includes:

Development of core technologies

Application of these technologies on different verification domains

Commercial Driver validation of Centaur’s X86 design

Page 4 (University of Texas at Austin) X86 Binary Analysis August, 2013 4 / 15

ACL2 Timeline

Timeline

Our group has been working on the development and deployment of
reasoning systems for 40 years.

Boyer and Moore meet

insertion sort

binary adder

expression compiler

prime factorization

BDX930 abandoned

RSA

unsolvability of halting problem

FM8501

Gödel

FM8502

KIT OS kernel

Piton

micro Gypsy compiler

Unity
Gauss

FM9001

Byzantine Generals

clock sync

biphase mark

Motorola 68020

Nqthm compiler

DEC alpha
Motorola CAP

Paris-Harrington Ramsey

AMD K5 floating-point division
µcode

real-time model

Rockwell JEM1

initial ACL2 workshop

Logic formalization (Spain),
ongoing

IBM floating point algorithms

Kalman filters

FM9801

UCLID integration prototype
AAMP7G MIL cert.

Y86

Dijkstra shortest path

sixth ACL2 workshop

Rockwell Greenhills OS

Galois/Rockwell SHADE
AMD floating-point rtl, ongoing

ACM Software System Award

Buyer/seller

x86 ring model/proof

fast consensus analysis

Y86 with STOBJ
X86 ISA

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Page 5 (University of Texas at Austin) X86 Binary Analysis August, 2013 5 / 15

Evolving X86 ISA Model

Evolving X86 ISA Model

We are developing an ISA for the X86 architecture.

X86 model implements almost all one- and two-byte instructions

For all defined instructions, model implements all addressing modes

It can emulate (almost all) X86 binary-level, integer programs emitted
by GCC/LLVM

ZV

Regs

PC

Mem

Programmer
State

S ZV
Next−State

Function

X86

Regs

PC

Mem

Programmer
State

S

Page 6 (University of Texas at Austin) X86 Binary Analysis August, 2013 6 / 15

X86 Top-Level Model

X86 Top-Level Model

We extended (now 118 instructions, 219 opcodes) our X86 ISA model.

(defun x86-run (n x86)

; Returns x86 obtained by executing n instructions (or until halting).

(cond ((ms x86) x86)

((zp n) x86)

(t (let ((x86 (x86-fetch-decode-execute x86)))

(x86-run (1- n) x86)))))

Our X86 ISA model is now about 40,000 lines in size.

Without MM enabled: ∼3+ million instructions/sec

With MM enabled: ∼580K instructions/sec

These numbers will improve. All memory accesses are currently performed
as bytes, thus a 64-bit read requires 132+ memory accesses. If we use
32-bit values, a 64-bit read only requires 10+ memory accesses.

Page 7 (University of Texas at Austin) X86 Binary Analysis August, 2013 7 / 15

X86 One-Byte OPCODE Map

X86 One-Byte OPCODE Map

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ADD ADD ADD ADD ADD ADD OR OR OR OR OR OR Two-byte
escape

1 ADC ADC ADC ADC ADC ADC SBB SBB SBB SBB SBB SBB

2 AND AND AND AND AND AND SUB SUB SUB SUB SUB SUB

3 XOR XOR XOR XOR XOR XOR CMP CMP CMP CMP CMP CMP

4

5 PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH POP POP POP POP POP POP POP POP

6 MOVSXD PUSH IMUL PUSH IMUL INS INS OUTS OUTS

7 JO JNO JB JNB JZ JNZ JBE JNBE JS JNS JP JNP JL JNL JLE JNLE

8 Imm Grp
1A

Imm Grp
1A

Imm Grp
1A TEST TEST XCHG XCHG MOV MOV MOV MOV MOV LEA MOV POP

9 NOP XCHG XCHG XCHG XCHG XCHG XCHG XCHG CBW CWD WAIT PUSHF POPF SAHF LAHF

A MOV MOV MOV MOV MOVS MOVS CMPS CMPS TEST TEST STOS STOS LODS LODS SCAS SCAS

B MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV

C Shift Grp
2

Shift Grp
2 RETN RETN MOV MOV ENTER LEAVE RETF RETF INT 3 INT IRET

D Shift Grp
2

Shift Grp
2

Shift Grp
2

Shift Grp
2 XLAT Escape to coprocessor instruction set

E LOOPNE LOOPE LOOP JRCXZ IN IN OUT OUT CALL Jz NEAR Jz Short Jb IN IN OUT OUT

F HLT CMC Unary
Grp 3

Unary
Grp 3 CLC STC CLI STI CLD STD INC/DEC

Grp4
INC/DEC

Grp4

Legend:

Implemented instructions
Implemented prefixes
Instructions not yet implemented
Instructions not supported by our model
Instructions not available in X86 64-bit mode
Escape to other opcode maps

Page 8 (University of Texas at Austin) X86 Binary Analysis August, 2013 8 / 15

Verifying X86 Programs

Verifying X86 Programs

As an example, we use ACL2 to symbolically execute our X86 model.

We compile C-code with GCC/LLVM.

We load binary code into the memory of our X86 model.

We initialize the registers, etc. with symbolic values.

Mem
Regs

PC

Mem
Regs

PC

Mem
Regs

PC

Regs

PC

Mem

Programmer

State

S ZV

Regs

PC

Mem

Programmer

State

S ZV

Mem
Regs

PC

Page 9 (University of Texas at Austin) X86 Binary Analysis August, 2013 9 / 15

Popcount C-code

Popcount C-code

int popcount_32 (unsigned int v)

{
v = v - ((v >> 1) & 0x55555555); // by Sean Anderson

v = (v & 0x33333333) + ((v >> 2) & 0x33333333);

v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;

return (v);

}

int popcount_64 (long unsigned int v)

{
long unsigned int v1, v2;

v1 = (v & 0xFFFFFFFF); // v1: lower 32 bits of v

v2 = (v >> 32); // v2: upper 32 bits of v

return (popcount_32(v1) + popcount_32(v2));

}

int popcount_128 (long unsigned int v1, long unsigned int v2)

{
if (v1 == 0)

return (42); // BUG introduced here!

else
return (popcount_64(v1) + popcount_64(v2));

}

Page 10 (University of Texas at Austin) X86 Binary Analysis August, 2013 10 / 15

Popcount X86 Binary Code

Popcount X86 Binary Code

(defconst *popcount/popcount-128-bug-binary*

(list

;; Section: <popcount_32>:

(cons #x4005c0 #x89) ;; mov %edi,%edx

(cons #x4005c1 #xfa) ;;

(cons #x4005c2 #x89) ;; mov %edi,%eax

...

;; Section: <popcount_64>:

(cons #x400600 #x89) ;; mov %edi,%esi

(cons #x400601 #xfe) ;;

(cons #x400602 #x89) ;; mov %edi,%eax

(cons #x400603 #xf8) ;;

(cons #x400604 #xd1) ;; shr %esi

(cons #x400605 #xee) ;;

(cons #x400606 #x81) ;; and $0x55555555,%esi

...

;; Section: <popcount_128>:

(cons #x400680 #x48) ;; mov %rbx,-0x10(%rsp)

(cons #x400681 #x89) ;;

(cons #x400682 #x5c) ;;

(cons #x400683 #x24) ;;

(cons #x400684 #xf0) ;;

(cons #x400685 #x48) ;; mov %rbp,-0x8(%rsp)

(cons #x400686 #x89) ;;

(cons #x400687 #x6c) ;;

(cons #x400688 #x24) ;;

(cons #x400689 #xf8) ;;

(cons #x40068a #x48) ;; sub $0x10,%rsp

...))

Page 11 (University of Texas at Austin) X86 Binary Analysis August, 2013 11 / 15

Not a Theorem

Not a Theorem

(def-gl-thm x86-popcount-correct

:hyp (and (natp n)

(< n (expt 2 128)))

:concl

(let* ((start-address #x400680) ; Program start

(halt-address #x4006b9) ; Stop here

(x86 (setup-for-popcount-run ; Initialize

nil start-address halt-address nil 0 ; Simulator

popcount/popcount-128-binary)) ; with code

(x86 (!rgfi *rdi* (logand n *2^64-1*) x86)) ; RDI lower 64 bits of n

(x86 (!rgfi *rsi* (ash n -64) x86)) ; RSI upper 64 bits of n

(x86 (!rgfi *rsp* *2^45* x86)) ; Stack pointer RSP set

(count 300) ; Maximum steps

(x86 (x86-run count x86))) ; Simulate X86 model

(and (equal (rgfi *rax* x86) ; Popcount by X86 code

(logcount n)) ; equal to spec?

(equal (rip x86) ; Simulation stoped at

(+ 1 halt-address)))) ; halt address?

:g-bindings

‘((n (:g-number ,(gl-int 0 1 129))))

:rule-classes nil)

Page 12 (University of Texas at Austin) X86 Binary Analysis August, 2013 12 / 15

Is a Theorem

Is a Theorem

(def-gl-thm x86-popcount-correct

:hyp (and (natp n) ; Exclude inputs with lower 64-bits zero

(< n (expt 2 128))

(not (equal (logand n *2^64-1*) 0)))

:concl

(let* ((start-address #x400680) ; Program start

(halt-address #x4006b9) ; Stop here

(x86 (setup-for-popcount-run ; Initialize

nil start-address halt-address nil 0 ; Simulator

popcount/popcount-128-binary)) ; with code

(x86 (!rgfi *rdi* (logand n *2^64-1*) x86)) ; RDI lower 64 bits of n

(x86 (!rgfi *rsi* (ash n -64) x86)) ; RSI upper 64 bits of n

(x86 (!rgfi *rsp* *2^45* x86)) ; Stack pointer RSP set

(count 300) ; Maximum steps

(x86 (x86-run count x86))) ; Simulate X86 model

(and (equal (rgfi *rax* x86) ; Popcount by X86 code

(logcount n)) ; equal to spec?

(equal (rip x86) ; Simulation stoped at

(+ 1 halt-address)))) ; halt address?

:g-bindings

‘((n (:g-number ,(gl-int 0 1 129))))

:rule-classes nil)

Page 13 (University of Texas at Austin) X86 Binary Analysis August, 2013 13 / 15

Future Work

Ongoing Work, Future Work

Extending the ACL2 system:

Integrate SAT mechanisms into ACL2

Extend our symbolic simulation techniques

In general, improve the ACL2 system to support our X86 ISA

Extending our X86 ISA model:

Continue integrating X86 memory management into our model

Continue extending the number of instructions modeled

Develop co-simulation environment for model validation

Check FreeBSD binary-level code properties?

Interested in simple problems meaningful to FreeBSD community

We can provide dynamic verification capabilities, flow analysis, ...

Page 14 (University of Texas at Austin) X86 Binary Analysis August, 2013 14 / 15

Conclusion

Conclusion

We continue to expand our modeling and analysis capabilities.

We have developed a 64-bit data and 52-bit address memory model

We have specified most integer instructions with their addressing
modes

We are developing a co-simulation mechanism for model validation

We have started verifying X86 binary programs

Our model can be used as a built-to and a compile-to specification

Our model can be used to safely explore all manner of malware

We perform all of our work in an environment where we can prove or
disprove theorems about our models.

Page 15 (University of Texas at Austin) X86 Binary Analysis August, 2013 15 / 15

	Ecosystem
	ACL2 Timeline
	Evolving X86 ISA Model
	X86 Top-Level Model
	X86 One-Byte OPCODE Map
	Verifying X86 Programs
	Popcount C-code
	Popcount X86 Binary Code
	Not a Theorem
	Is a Theorem
	Future Work
	Conclusion

