
Efficient Heuristic Regex Matching

Gábor Kövesdán
<gabor@kovesdan.org>

20 Oct 2012



Introduction - History

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

2

• Summer of Code 2008: Porting BSD-licensed Text-Processing
Tools from OpenBSD

• July - Aug 2010: BSD grep committed but has a poor perfor-
mance

Conclusion is that libc regex is not efficient enough. Further-
more, POSIX API is inefficient by design. (GNU grep)

• Summer of Code 2011: Replacing the old regex implementa-
tion

Porting TRE and applying some improvements. Single pattern
cases covered, multiple patterns for future development.

• Currently: Individual library on top of TRE. Both single and mul-
tiple pattern cases targeted and development in progress.



Trick #1: Longest literal fragment

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

3

• regexec() takes const char *, not byte-counted buffer.

• This implies reading character by character.

• Cannot use efficient algorithms: Quick Search, Boyer-Moore
and such can shift more characters in each iteration but they
are literal matching algorithms.

• Idea: take longest literal fragment and use that for finding poten-
tially matching lines. Only check the corresponding line.

• Needs alternative interface, e.g. regnexec() that takes buffer
length.



Trick #2: Prefix heuristics

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

4

• grep is line-oriented, that is, matches cannot overlap two lines.

• The literal fragment trick can only be applied in the line-oriented
case.

• E.g. [^f]*foo may contain \n in general case and we do not
even know how many characters will be caught by *.

• But for foo[^f]* we can find at least a potential start position.
This is another easy case.



Trick #3: Multiple patterns

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

5

• Normal approach: reading n times for n pattern...

• Wu-Manber: Boyer-Moore variant for multiple patterns.

• Idea: extract longest literal fragment from each pattern and ap-
proximate with that for line-oriented case.

• More general case: using all literal prefixes if available

• Most general case: even if we cannot use a shortcut, at least
hide the iteration logic and return the first match from a single
call.



API overview

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

6

• fastreg_regcomp(), fastreg_regexec(),
fastreg_regfree(): The usual stuff...

• fastreg_regnexec(): Can shift quickly, does not need to call
strlen()

• fastreg_mregcomp(), fastgreg_mregexec(),
fastreg_mregfree(): takes different state structure and ex-
pects an array of patterns to work with.

• fastreg_mregnexec(): also takes an array of pattern
lengths.



Some Extras

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

7

• This high level library is a proper place for convenience fea-
tures.

• REG_STARTEND, REG_PEND: BSD-specific extensions

• REG_WORD: word boundary check

• REG_GNU: permissive GNU syntax (required for grep)



Summary

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

8

• Hides complexity.

• Underlying POSIX-compliant implementation can be really sim-
ple...

• ... and is easy to replace.

• Further improvements can be added here; let us keep the main
implementation simple.



Status

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

9

• Started as a TRE extension, being refactored to be a separate
(but dependent) library.

• Multiple pattern code mostly ready but still buggy

• REG_ICASE for multiple patterns

• REG_WORD, REG_GNU

• Manuals

• Test, test, test ...



Future Plans

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

10

• BSD grep will surely use it...

• What about BSD sed? Would it be significant the performance
boost?

• Where else do we deal with pattern matching? Similar method
in memmem()? Or in fnmatch()?

• In general: in what other fields do we have good heuristics?



Questions?

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

11



Thanks for listening...

Copyright © 2012 Gábor Kövesdán
Published: 20 Oct 2012

12

Gábor Kövesdán

gabor@FreeBSD.org


	Introduction - History
	Trick #1: Longest literal fragment
	Trick #2: Prefix heuristics
	Trick #3: Multiple patterns
	API overview
	Some Extras
	Summary
	Status
	Future Plans
	Questions?
	Thanks for listening...

