Efficient Heuristic Regex Matching

Gabor Kovesdan
<gabor @ovesdan. or g>

20 Oct 2012

Introduction - History

« Summer of Code 2008: Porting BSD-licensed Text-Processing
Tools from OpenBSD

e July - Aug 2010: BSD grep committed but has a poor perfor-
mance

Conclusion is that libc regex is not efficient enough. Further-
more, POSIX API is inefficient by design. (GNU grep)

« Summer of Code 2011: Replacing the old regex implementa-
tion
Porting TRE and applying some improvements. Single pattern
cases covered, multiple patterns for future development.

e Currently: Individual library on top of TRE. Both single and mul-
tiple pattern cases targeted and development in progress.

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

Trick #1: Longest literal fragment

« regexec() takes const char *, not byte-counted buffer.
* This implies reading character by character.

« Cannot use efficient algorithms: Quick Search, Boyer-Moore
and such can shift more characters in each iteration but they
are literal matching algorithms.

 |dea: take longest literal fragment and use that for finding poten-
tially matching lines. Only check the corresponding line.

« Needs alternative interface, e.g. r egnexec() that takes buffer
length.

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

Trick #2: Prefix heuristics

« grep is line-oriented, that is, matches cannot overlap two lines.

* The literal fragment trick can only be applied in the line-oriented
case.

« E.g.[*f]*f 00 may contain \ n in general case and we do not
even know how many characters will be caught by *.

 Butfor f oo[~f]* we can find at least a potential start position.
This is another easy case.

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

Trick #3: Multiple patterns

« Normal approach: reading n times for n pattern...
 Wu-Manber: Boyer-Moore variant for multiple patterns.

» |dea: extract longest literal fragment from each pattern and ap-
proximate with that for line-oriented case.

 More general case: using all literal prefixes if available

« Most general case: even if we cannot use a shortcut, at least
hide the iteration logic and return the first match from a single
call.

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

APl overview

« fastreg regconp(),fastreg regexec(),
fastreg regfree(): The usual stuff...

« fastreg regnexec(): Can shift quickly, does not need to call
strlen()

« fastreg nregconp(),fastgreg nregexec(),
fastreg nregfree(): takes different state structure and ex-
pects an array of patterns to work with.

« fastreg _nregnexec() : also takes an array of pattern
lengths.

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

« This high level library is a proper place for convenience fea-
tures.

« REG STARTEND, REG PEND: BSD-specific extensions
« REG WORD: word boundary check
« REG GNU: permissive GNU syntax (required for grep)

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

e Hides complexity.

« Underlying POSIX-compliant implementation can be really sim-
ple...

e ...and is easy to replace.

e Further improvements can be added here; let us keep the main
Implementation simple.

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

o Started as a TRE extension, being refactored to be a separate
(but dependent) library.

« Multiple pattern code mostly ready but still buggy
 REG | CASE for multiple patterns

« REG WORD, REG GNU

 Manuals

e Test, test, test ...

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

Future Plans

BSD grep will surely use it...

What about BSD sed? Would it be significant the performance
boost?

Where else do we deal with pattern matching? Similar method
inmenmen() ?0rinfnmatch() ?

In general: in what other fields do we have good heuristics?

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

Questions?

Copyright © 2012 Gabor Kdvesdan
Published: 20 Oct 2012

Thanks for listening...

Gabor Kovesdan
gabor@FreeBSD.org

Copyright © 2012 Gabor Kévesdan

Published: 20 Oct 2012

	Introduction - History
	Trick #1: Longest literal fragment
	Trick #2: Prefix heuristics
	Trick #3: Multiple patterns
	API overview
	Some Extras
	Summary
	Status
	Future Plans
	Questions?
	Thanks for listening...

