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Mirage



What is Mirage...?

I Mirage is an exokernel which can be used for building secure,
high-performance network application on top of various cloud
and mobile platforms.

I Source code can be developed on arbitrary operating system,
e.g. FreeBSD or GNU/Linux that could be then translated to
a specialized standalone microkernel to be run on top of Xen.

I It is developed in OCaml, supplemented with some additional
syntax constructs and libraries that is going to be mapped
directly to the corresponding operating system primitives.

I Completely event-driven architecture, without preemptive
thread scheduling... Yeah! :-)



Why Mirage...?

There are way too many layers in today’s systems...
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Why Mirage...?

Complex and complicated (sometimes even bloated) source code...



How Mirage Can Help With This...?

I Static typing guarantees provided by, and different kind of
domain-specific languages expressed in OCaml help to reduce
the risk of potential (security) bugs.

I There are more possibilities to deploy compile-time
optimizations,

”
whole OS optimization” – less layers are

actually present in the resulting binary.

I Each of the systems are simple, easy-to-tackle – multiple cores
are handled by the hypervisor.



(Hopefully) A Simple Example

let echo () =

lwt mgr, mgr_t = Manager.create () in

let src = None, 8081 in

Flow.listen mgr (‘TCPv4 (src,

(fun (addr, port) t ->

Console.log "From %s:%d" (ipv4_addr_to_string addr) port;

let rec echo () =

lwt res = Flow.read t in

match res with

| None ->

Console.log "Connection closed";

return ()

| Some data ->

Flow.write t data >>= echo

in

echo ()

)

))



Mirage/Xen

$ ocamlopt -output-obj -o app.o echo.ml

By using the ”Xen MiniOS”, we can easily get a bootable kernel.

I It starts up in 64-bit mode, all the memory is available.

I Relatively small size, ab. 50 – 100 KB

I The implementation uses the lwt OCaml library, which
implements cooperative threading and enables to create
monadic blocks.

I Real concurrency is available through Xen (vCPUs).



Memory Management, Processing Network Buffers
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Portability

Thanks to OCaml, Mirage is extremely portable. Some of the
existing backends:

I POSIX / TUNTAP: Standard OCaml runtime + Ethernet
tap

I POSIX: Standard socket interface via a TCP/UDP socket

I Javascript: ocamljs – WebSockets

I Google AppEngine: ocamljava – HTTP

I Android, iMotes: ocamlopt ARM backend

Further backends are in the works...!



Mirage/kFreeBSD



Mirage/kFreeBSD

A summer project at Cambridge University Computer Laboratory:
porting Mirage to the FreeBSD kernel.

Objectives:

I Run Mirage-based applications in the FreeBSD kernel.

I Implement all the required system-level primivites:

I Accept and send frames
I Handle events, interaction with the kernel
I Preserve

”
zero-copy” properties

I Study the performance of the generated OCaml code by
DTrace.

I Detailed comparison of performance and maintainability of the
Mirage network stack and the original FreeBSD network stack.



Current Architecture
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Experiences, Challenges

I The OCaml standard library (of version 3.12.1) builds upon
floating-point numbers – while the FreeBSD kernel does not
really this.

I OCaml ports in the FreeBSD Ports Collection are getting
stale. They may possibly need a new maintainer.

I The C compiler is more strict when building kernel modules,
uses a different memory model, and it does not support PIC.

I Because of the hybrid C – OCaml solution, it is hard to debug
sometimes – logging to serial console works though :-)

I FreeBSD DTrace port has some limitations (when working
with kernel modules).



Further Reading

Some recommended links to study:

http://openmirage.org/
http://github.com/avsm/mirage/
http://github.com/mirage/
http://github.com/pgj/mirage-kfreebsd/
http://ocsigen.org/lwt/

http://openmirage.org/
http://github.com/avsm/mirage/
http://github.com/mirage/
http://github.com/pgj/mirage-kfreebsd/
http://ocsigen.org/lwt/

