
Mirage/kFreeBSD

Gábor Páli
pgj@FreeBSD.org

Developer Summit 2012,10
Warsaw, Poland

FreeBSD

October 20, 2012

pgj@FreeBSD.org


Mirage



What is Mirage...?

I Mirage is an exokernel which can be used for building secure,
high-performance network application on top of various cloud
and mobile platforms.

I Source code can be developed on arbitrary operating system,
e.g. FreeBSD or GNU/Linux that could be then translated to
a specialized standalone microkernel to be run on top of Xen.

I It is developed in OCaml, supplemented with some additional
syntax constructs and libraries that is going to be mapped
directly to the corresponding operating system primitives.

I Completely event-driven architecture, without preemptive
thread scheduling... Yeah! :-)



Why Mirage...?

There are way too many layers in today’s systems...

Hardware

Kernel

Hypervisor

Processes

Runtime
System

Threads

Application



Why Mirage...?

Complex and complicated (sometimes even bloated) source code...



How Mirage Can Help With This...?

I Static typing guarantees provided by, and different kind of
domain-specific languages expressed in OCaml help to reduce
the risk of potential (security) bugs.

I There are more possibilities to deploy compile-time
optimizations,

”
whole OS optimization” – less layers are

actually present in the resulting binary.

I Each of the systems are simple, easy-to-tackle – multiple cores
are handled by the hypervisor.



(Hopefully) A Simple Example

let echo () =

lwt mgr, mgr_t = Manager.create () in

let src = None, 8081 in

Flow.listen mgr (‘TCPv4 (src,

(fun (addr, port) t ->

Console.log "From %s:%d" (ipv4_addr_to_string addr) port;

let rec echo () =

lwt res = Flow.read t in

match res with

| None ->

Console.log "Connection closed";

return ()

| Some data ->

Flow.write t data >>= echo

in

echo ()

)

))



Mirage/Xen

$ ocamlopt -output-obj -o app.o echo.ml

By using the ”Xen MiniOS”, we can easily get a bootable kernel.

I It starts up in 64-bit mode, all the memory is available.

I Relatively small size, ab. 50 – 100 KB

I The implementation uses the lwt OCaml library, which
implements cooperative threading and enables to create
monadic blocks.

I Real concurrency is available through Xen (vCPUs).



Memory Management, Processing Network Buffers

OCaml major
heap

OCaml minor
heap

Reserved

Network
buffers

OS code & data

6
4

-b
it

 a
d

d
re

ss
 s

p
a
ce

4 MB

4 MB

IP header

TCP header

Data to
send

IP header

TCP header

Received
data

zero-copy



Portability

Thanks to OCaml, Mirage is extremely portable. Some of the
existing backends:

I POSIX / TUNTAP: Standard OCaml runtime + Ethernet
tap

I POSIX: Standard socket interface via a TCP/UDP socket

I Javascript: ocamljs – WebSockets

I Google AppEngine: ocamljava – HTTP

I Android, iMotes: ocamlopt ARM backend

Further backends are in the works...!



Mirage/kFreeBSD



Mirage/kFreeBSD

A summer project at Cambridge University Computer Laboratory:
porting Mirage to the FreeBSD kernel.

Objectives:

I Run Mirage-based applications in the FreeBSD kernel.

I Implement all the required system-level primivites:

I Accept and send frames
I Handle events, interaction with the kernel
I Preserve

”
zero-copy” properties

I Study the performance of the generated OCaml code by
DTrace.

I Detailed comparison of performance and maintainability of the
Mirage network stack and the original FreeBSD network stack.



Current Architecture

kld(3)

sysctl(3)

Kernel module

OCaml
runtime

OCaml code

FreeBSD/amd64 kernel

UMA
zone

free()

malloc()

kthread_add()

kthread_exit()

"mirage"

em0

Hardware

ether_input()

ether_output()

mbuf(9)

mbuf(9)

IN

OUT

struct ifnet

printf(9)

Netif.enumerate
N
e
t
i
f
.
l
i
s
t
e
n

N
e
t
i
f
.
w
r
i
t
e
v

Console.log

microtime(9)

wire

serial
console

clockClock.time

Io_page
contigmalloc()

contigfree()



Experiences, Challenges

I The OCaml standard library (of version 3.12.1) builds upon
floating-point numbers – while the FreeBSD kernel does not
really this.

I OCaml ports in the FreeBSD Ports Collection are getting
stale. They may possibly need a new maintainer.

I The C compiler is more strict when building kernel modules,
uses a different memory model, and it does not support PIC.

I Because of the hybrid C – OCaml solution, it is hard to debug
sometimes – logging to serial console works though :-)

I FreeBSD DTrace port has some limitations (when working
with kernel modules).



Further Reading

Some recommended links to study:

http://openmirage.org/
http://github.com/avsm/mirage/
http://github.com/mirage/
http://github.com/pgj/mirage-kfreebsd/
http://ocsigen.org/lwt/

http://openmirage.org/
http://github.com/avsm/mirage/
http://github.com/mirage/
http://github.com/pgj/mirage-kfreebsd/
http://ocsigen.org/lwt/

