Mirage/kFreeBSD

Gabor Péli
pgjOFreeBSD.org

FreeBSD

Developer Summit 2012,10
Warsaw, Poland

October 20, 2012

pgj@FreeBSD.org

What is Mirage...”

» Mirage is an exokernel which can be used for building secure,
high-performance network application on top of various cloud
and mobile platforms.

» Source code can be developed on arbitrary operating system,
e.g. FreeBSD or GNU/Linux that could be then translated to
a specialized standalone microkernel to be run on top of Xen.

» It is developed in OCaml, supplemented with some additional
syntax constructs and libraries that is going to be mapped
directly to the corresponding operating system primitives.

» Completely event-driven architecture, without preemptive
thread scheduling... Yeah! :-)

§ UNIVERSITY OF Ty
CAMBRIDGE A Cam J

Why Mirage...?

There are way too many layers in today's systems...

Application ((
Threads
Runtime
System N Microsoft®
Processes N ET
Py
Kernel ! AL
Windows Server-200s
. Hyper-V*
Hypervisor openstack

CLOUD SOFTWARE

Hardware Xen "
vmware

Why Mirage...?

Complex and complicated (sometimes even bloated) source code...

Linux kernel map
layers . 0 - memory . storage] ':letworking ir:‘t::f‘:'c‘e
system interfaces memory access files & directories.
Inaiopcaleh oam s
user space et e e
interfaces

sockets access HI char devices
access. s socketcan
g

svs.0pen
s oo T
© s wite

memory disk controllers

network controllers user peripherals

How Mirage Can Help With This...?

» Static typing guarantees provided by, and different kind of
domain-specific languages expressed in OCaml help to reduce
the risk of potential (security) bugs.

» There are more possibilities to deploy compile-time
optimizations, ,,whole OS optimization” — less layers are
actually present in the resulting binary.

» Each of the systems are simple, easy-to-tackle — multiple cores
are handled by the hypervisor.

(Hopefully) A Simple Example

let echo () =
lwt mgr, mgr_t = Manager.create () in
let src = None, 8081 in
Flow.listen mgr (‘TCPv4 (src,
(fun (addr, port) t ->
Console.log "From %s:%d" (ipv4_addr_to_string addr) port;
let rec echo () =
lwt res = Flow.read t in
match res with
| None ->
Console.log "Connection closed";
return ()
| Some data ->
Flow.write t data >>= echo
in
echo ()

))

Mirage/Xen

$ ocamlopt -output-obj -o app.o echo.ml

By using the "Xen MiniOS", we can easily get a bootable kernel.

» It starts up in 64-bit mode, all the memory is available.
» Relatively small size, ab. 50 — 100 KB

» The implementation uses the 1wt OCaml library, which
implements cooperative threading and enables to create
monadic blocks.

» Real concurrency is available through Xen (vCPUs).

Memory Management, Processing Network Buffers

64-bit address space

OCaml major
heap

ZEero-copy
-.-......-.-.-....>
Network
buffers
Reserved

.

.

7

IP header

TCP header

Data to
send

IP header

TCP header

Received

data

Portability

Thanks to OCaml, Mirage is extremely portable. Some of the
existing backends:

» POSIX / TUNTAP: Standard OCaml runtime + Ethernet
tap

» POSIX: Standard socket interface via a TCP/UDP socket
» Javascript: ocamljs — WebSockets

» Google AppEngine: ocamljava — HTTP

» Android, iMotes: ocamlopt ARM backend

Further backends are in the works...!

Mirage /kFreeBSD

Mirage/kFreeBSD

A summer project at Cambridge University Computer Laboratory:
porting Mirage to the FreeBSD kernel.

Objectives:

» Run Mirage-based applications in the FreeBSD kernel.
» Implement all the required system-level primivites:

> Accept and send frames
» Handle events, interaction with the kernel
> Preserve , zero-copy” properties

» Study the performance of the generated OCaml code by
DTrace.

» Detailed comparison of performance and maintainability of the
Mirage network stack and the original FreeBSD network stack.

Current Architecture

Hardware

FreeBSD/amd64 kernel
sysctl(3)

mbuf (9) n
=== ether input() | ==

kld(3) i
i

1

1

I

Kernel module

OCaml code |kthreag add() *

€«-F-----

"mirage"

Netiff.listen

Netif.yritev

struct ifnet
| contigmalloc() -
IR opage]f T e
OCaml Jo L fmeneco | UMA
runtime T (il > zone
Elock. ¥ine microtime(9) [[[7 clock
kthFeadiexit () serial

console
.........C..‘?.’.‘E9..1.?.:.}9.9........4 printf(9)

Experiences, Challenges

» The OCaml standard library (of version 3.12.1) builds upon
floating-point numbers — while the FreeBSD kernel does not
really this.

» OCaml ports in the FreeBSD Ports Collection are getting
stale. They may possibly need a new maintainer.

» The C compiler is more strict when building kernel modules,
uses a different memory model, and it does not support PIC.

» Because of the hybrid C — OCaml solution, it is hard to debug
sometimes — logging to serial console works though :-)

» FreeBSD DTrace port has some limitations (when working
with kernel modules).

Further Reading

Some recommended links to study:

http://openmirage.org/
http://github.com/avsm/mirage/
http://github.com/mirage/
http://github.com/pgj/mirage-kfreebsd/
http://ocsigen.org/lut/

http://openmirage.org/
http://github.com/avsm/mirage/
http://github.com/mirage/
http://github.com/pgj/mirage-kfreebsd/
http://ocsigen.org/lwt/

