
Offload Engines

Jim Harris
jimharris@freebsd.org

james.r.harris@intel.com
FreeBSD DevSummit 2012

Agenda

• Motivation for offload framework

• Proposed scope

• Requirements

• Integration with busdma(?)

• Plans

• Next Steps

Motivation for offload framework

• Lack of a generic API for “data movement”

– Common interface to accelerate operations (using
HW or optimized SW) for memcopy, XOR, P+Q,
dual/multicast, etc.

– Common interface for drivers to register as “data
movers”

Proposed scope

• Focus on operations not currently supported
in opencrypto

• Allow for not only hardware offload, but also
arch-specific optimized routines

Requirements for offload framework

• Efficiency
– Difficult to quantify, but specifically want to avoid:

• Multiple SG list traversals

• Using bounce buffers for HW offload

• Transparently use SW routines if HW engines
not available

• Chaining
– DMA from A to B, from C to D, from E to F, then…

– XOR from B, D, F to G

Requirements for offload framework
(cont.)

• Callback mechanism to notify client of
completion

• At least rudimentary support for all CPU
architectures

– Some archs may always revert to basic C routines
for performing operations

• Non-blocking

– Don’t put thread to sleep if waiting for resource

Requirements for offload framework
(cont.)

• Allocate offload resources on demand

– i.e. avoid allocating descriptor memory if there are
no clients for the offload framework

• sysctl hooks

– Force operations <= X bytes to SW

• (X == 0 -> disable HW offload)

Integration with busdma

• Drivers can use DMA tags to describe
addressing restrictions

• Offload framework can use DMA tags to avoid
bounce buffering

• Offload framework can walk virtual addresses
and perform/initiate operations in line

– Rather than building SGLs first, then traversing
SGLs

Aligned XOR Example
2 sources, 8KB length

Non-aligned XOR Example
2 sources, 8KB length

Plans

• ioat(4) driver under development

– Also known as “Crystal Beach”

– Supports DMA, XOR, P+Q, memfill on certain Intel
Xeon processors

– Tracking to EOQ2 for completion

• Driver only, no offload framework

• Continue working on offload framework in
parallel (but not full time)

Next Steps

• Incorporate today’s input into a more concrete
set of APIs for review

• Prototype framework for x86/ioat

– Help on plumbing for ZFS RAIDz

• Areas of help needed

– Support for HW offload for additional
architectures

– Support for additional HW offload engines

