
Jail services

Paweł Jakub Dawidek
<pjd@FreeBSD.org>

mailto:pjd@FreeBSD.org


What's this?

• dynamic extensions for the in-kernel
prison structure

• allows to load some service that operates
on jails and attach some data to each jail
structure



Why?

• I'd like to use it to allow ZFS file systems
management within a jail

• not much code needed on ZFS side -
I reuse zones code

• ZFS fits just great in jails framework:
• zpool – manages raw disks from

non-jailed environment
• zfs – logical file system – no access to

raw disks



Example of use

main# zpool create tank mirror da0 da1
main# zfs create tank/jail
...
main# jail /tank/jail 127.0.0.1 /bin/tcsh
main# zfs jail -i <jid> tank/jail
jail# zfs create tank/jail/home
jail# zfs snapshot tank/jail/home



No access to raw disks

• very important feature – our file systems
are not ready for corrupted metadata -
it will panic entire system



KPI

struct prison_service *prison_register(const char *name,
prison_service_create_t create,
prison_service_destroy_t destroy);

void prison_deregister(struct prison_service *psrv);

void prison_service_data_attach(struct prison_service *psrv,
struct prison *pr, void *data);

void *prison_service_data_get(struct prison_service *psrv,
struct prison *pr);

void *prison_service_data_detach(struct prison_service *psrv,
struct prison *pr);



How it works?

• calls 'create' method for every existing
jail on 'register' and on new jails creation

• calls 'destroy' method for all jails going
away and for all existing jails on
'deregister'

• allows to attach some service-specific data
to each jail and then operate on it when
needed



Why not ZFS internal?

• because can be used for other things as
well, like per-jail sysvipc name spaces,
per-jail network interfaces (just an
example, hope to see vimage soon)


