It's a Bug's Life

Some musings on software bugs

lan Dowse
lan.Dowse®@corvil.com
iedowse®@FreeBSD.org

Eotvos Lorand Tudomanyegyetem,
Budapest, Hungary
November 20, 2010

Overview

» Background
* Panic

» Bug probability space

» Bug finding pitfalls

» Some special bug types
* Q&A

Background
* School of Mathematics, Trinity College Dublin

* Around 1995-2000, many servers moved from
commercial Unix to FreeBSD on PCs

» Early days of FreeBSD, busy systems, lots of users

- And we started seeing occasional kernel panics.

- Many repeated crash patterns, and we tracked down and
fixed quite a few bugs

 Work now in Corvil Ltd.

/
)AL - High performance, high tech latency management
Corvil systems deployed in modern trading environments

- During development, see very similar bug patterns

Panic: vrele negative ref cnt

Panic: vrele negative ref cnt

* Sept 1998 in Maths TCD we start seeing these panics

* Means that vnode reference count has gone negative

- Many many places in the kernel update vnode refs, so hard to debug
» Some patterns emerged though

- Mostly panic occurred on process exit on CWD vnode, always NFS

- 1000+ users but dwmalone was convinced the problem was
sometimes triggered by him logging out or sending mail

* Eventually tracked it down

- An incorrect vrele() call in the NFS filesystem when handling
errors in the link() operation

- Turned out dwmalone's mail client was attempting a cross-device

link() on his NFS home directory, when sending mail, so the
kernel did one vrele() too many

- Then when he logged out, *BAM*

Panic: vrele negative ref cnt

* The bug itself isn't particularly interesting, but some of the
patterns are:

* Right from the start there was more information than it
seemed

- There were many other FreeBSD bugs at the time, but this one
caused maybe 95% of panics we saw

- The problem began with an upgrade but we didn't notice
- The correlation with logging out seemed unlikely, but was real

- A few of the panic dumps actually had the NFS link() operation in
the stack trace but we didn't make the connection

* Everything about the panics made sense afterwards

- When it started happening, when it triggered, and why it was
almost always during logout

- Even the probable root cause of the bug became obvious (the
VOP_LINK man page contained incorrect information)

Bug probability space

Bug probability space

#’ B e .

p=1 =0. p=0.01 p=0.001 I p=0

* Some bugs are certain (e.g. a crash is guaranteed every time)

* Some bugs are actually impossible to trigger

* For example surrounding code prevents execution of the problematic
case or operation

* Most remaining bugs are relatively rare

* This has one quite interesting implication: the most commonly
occurring bug will typically trigger far more often than the next most
common one, e.g. 5 or even 100 times more often

» Of course the actual occurrence rate depends on usage
patterns, so can be site-specific, user-specific etc.

Bug probability space

#‘ #’ B . .

=0. p=0.01 p=0.001 I p=0

* Certain (p=1) bugs are very common during development

* Running any tests at all will catch these (e.g. does the program or
system still work at all after the code change?)

* You'll often find impossible (p=0) bugs when tracking down a
problem.

* |t's easy to then think you've fixed the real problem but in fact you
won't have changed the overall situation at all in practice

 Remember there are (generally) always more bugs out there

* Need to be sure that the bug you fix is actually the one causing the
main problem

Bug finding pitfalls

Ah, this must be it!

| \\\\\\\\\HIIHIII/////

p=0.1 p=0.01

\\\

////
) O
K T

i
i
0 =

Wy,
/////////

\\\\\\\

0. 001 | =0
- '2/11 mm\\\\\\\\ - P

» After hours of searching for a bug, it's really easy to convince
yourself that you've finally found it

« Especially if you find what looks like a problem in related code, or find
a problem that could confuse state or corrupt memory

* In many (most?) cases you actually get it wrong
* Maybe you've just found an impossible bug or a much less likely one
* Need to be really sure the apparent bug matches the problem

* Even obscure memory corruption bugs often cause surprisingly
consistent crash patterns

* Humans maybe just aren't very good at finding bugs!

How did this ever work?!

1,
\

I1f (error):;
ret’t

W
7
TN

-
-
>
~
1
=
~—

Some bugs involve code that is blatantly wrong

* Typos, cut & paste errors
* Misplaced braces or semicolons
* Uninitialised variables

* Access past the end of an array or allocation
Makes you wonder how the code ever worked at all
Easy to forget to be logical when you find these

* Just want to get rid of that awful mistake

Fixes for this class of bugs actually cause a surprising number
of fallout problems

But how did it really ever work?

| f (error)§f
return ™

/ \
H I\

* One of the most interesting sides of bug fixing

* You think “all bets are off”, “all hell will break loose” if code like this
executes

* But computers of course just continue logically
 |If it did seem to work before, you can find out how and why

* Maybe that code is never executed or nothing uses the results?

* Maybe the compiler happened to use the same CPU register for the
value you wanted and the uninitialised variable you actually used?

* Maybe the corrupted memory is in practice “safe” to corrupt?
* Leads to a real sense that the bug is fully understood

* And frequently to remarkably simple “how to repeat” steps

Use the core dump

F)

» Core dumps often appear to contain no useful information

« The crash may occur long after the bug triggered

* Maybe you don't have an executable with debugging symbols

* A bit of knowledge about assembly language, calling
conventions and registers helps a lot

* Even without debugging symbols you can find function arguments, local
variables, structure contents etc.

« Often later after you've found the bug, you realise there was
actually direct evidence of the problem in the core dump(s)

* |It's useful to remember this every time you start looking at a new bug

Some special bug types

(suggested by work colleagues)

aaaaaa

JJJJJJJJ

I] 1 { aid [{
I—f-.-d—-rr-'f-—r--ﬂ—-rr-f-—fn.-ﬂ—-rr-ﬂ-ﬂ—f—--d—
CST T T35 7 Lo 301 [73507 Lar 301 N 79 %01 L T I

* You fix the bug and everything falls apart

 E.g. A bug preventing a buggy optimisation from ever being applied

Small or far away?

Some bugs are small

Some are far away

(Reference to Father Ted series)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

