Flash subsystem for NetBSD

Device drivers for NAND flash memory

Adam Hoka
The NetBSD Foundation

Flash memory

e NOR flash

— Random r/w access, execute-in-place capability
— Small storage size, expensive

* NAND flash
— Cheap, high storage capacity
— No random access possible, unreliable
— Very common in embedded devices

NAND flash memory

Read and write are on a per page basis
— e.g. 2048 bytes for large page NAND

Writing needs an erase operation first
Erase is on a per block basis
— e.g. 64 pages is a block and thus 128kbytes

Blocks age, and become unusable over time
— “Bad blocks” need to be marked

Needs ECC because of this aging

NAND flash architecture

1 Block =32 Pages
= (8K + 256) Word

1 Page = 264 Word
1 Block = 264 Word x 32 Pages

128K Pages — = (8K + 256) Word
(=4,096 Blocks) (;gz W?:;' 1 Device = 264Words x 32Pages x 4096 Blocks
< = 528 Mbits
16 bit

256Word 1 8 Word
/ , /I/o 0~1/015
! Page Register

256 Word 8 Word

Where do we find NAND?

Embedded boards (ARM, MIPS, etc)
Smart phones

Portable music players
PC motherboards (BIOS)

The first two is important for us, because we
want to support NetBSD on those devices.

An example of an ARM board

B AR R EEEREA

2
2

(44

LA AL

“Prior art”

e Linux MTD

— Supports many devices, but horrible code
 U-boot MTD

— Almost the same as Linux, except better quality
 Andrew Turner's NAND Driver (FreeBSD)

— 8bit devices only, limited feature support

Flash device hierarchy in NetBSD

* Device specific driver
— implements the NetBSD nand(4) API

* nand(4) driver

— Uses functions exported from the device specific
driver to communicate with the NAND chip using ONFI
standard commands

— Implements the flash(4) API

* flash(4) driver

— Provides a high level API for the flash file system and a
block device interface through /dev/flash*

Why is it better than Linux MTD?

* Implemented using industry standard ONFI
NAND commands and specifications

* Clear interface and understandable code path
(mtd is a spaghetti monster)

* Designed for modern devices, no legacy code

Configuration example

NAND controller
omapnando at gpmc? addr 0x30000000

NAND layer
nand® at omapnando

Define FLASH partitions for board

flash® at nand@ offset Ox0 size Ox80000 readonly 1
flashl at nand@ offset Ox80000 size Ox80000 readonly 1
flash2 at nand@ offset 0x260000 size ©x20000

flash3 at nand@ offset 0x280000 size Ox400000

flash4 at nand@ offset Ox680000 size Ox0O

The state of implementation

 What'’s finished?
— NAND commands (standard ONFI 2.3)
— Block device driver
— Partition support
— ECC error checking support
— flashctl(8), a tool to manage flash devices

e What needs to be done?

— Bad block handling needs improvement
— Test on more hardware and bugs to find and fix

The Project named , TAMOP-4.2.1/B-09/1/KONV-2010-0005 — Creating
the Center of Excellence at the University of Szeged” is supported by
the European Union and co-financed by the European Regional Fund.

www.nfu.hu

(wvesting in your future

M
New Hum/aa/}/ De(felapmemf Flan

http://www.nfu.hu/

Thank you for listening!

Visit http://chewiefs.sed.hu/ for more information

Any questions?

http://chewiefs.sed.hu/

